\begin{tabbing} $\forall$${\it es}$:ES, $R$:(E$\rightarrow$E$\rightarrow\mathbb{P}$). \\[0ex]($\forall$$e$, ${\it e'}$:E. Dec($R$(${\it e'}$,$e$))) \\[0ex]$\Rightarrow$ $R$ =$>$ $\lambda$$x$,$y$. ($x$ $<$ $y$) \\[0ex]$\Rightarrow$ \=($\forall$$e$, ${\it e'}$:E.\+ \\[0ex](${\it e'}$ $R$ $e$) $\Rightarrow$ ($\neg$es{-}r{-}immediate{-}pred(${\it es}$;$R$;${\it e'}$;$e$)) $\Rightarrow$ ($\exists$$c$:E. ((${\it e'}$ $R$ $c$) \& ($c$ $R$ $e$)))) \- \end{tabbing}